Data Processing For VISTA

Jim Lewis, Mike Irwin CASU

VISTA Pipelines

- Summit Pipeline for rapid QC assessment
- 'Garching' pipeline for QC monitoring of the instrument and to provide calibration frames for summit pipeline.
- Both of the above are CPL pipelines with the same code base
- Science pipeline at CASU for creation of final data products.
 - Written in CASU's own C/Perl/CFITSIO infrastructure

Discs arrive from ESO roughly weekly

- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area

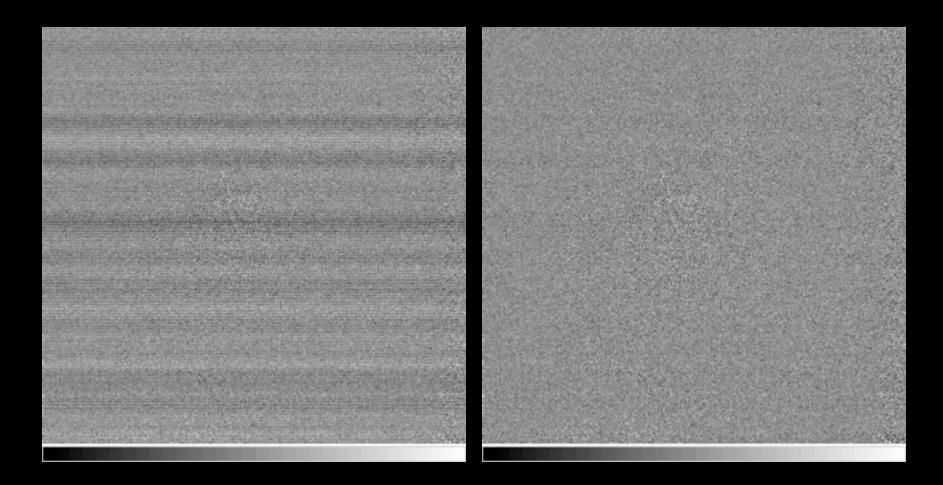
- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area
- Check for missing images

- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area
- Check for missing images
- Detect and correct missing header items

- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area
- Check for missing images
- Detect and correct missing header items
- Rename files (eg. v20091125_00001.fit)

- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area
- Check for missing images
- Detect and correct missing header items
- Rename files (eg. v20091125_00001.fit)
- Create index files (global & for each obs type)

- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area
- Check for missing images
- Detect and correct missing header items
- Rename files (eg. v20091125_00001.fit)
- Create index files (global & for each obs type)
- Ingest header info into raw data archive


- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area
- Check for missing images
- Detect and correct missing header items
- Rename files (eg. v20091125_00001.fit)
- Create index files (global & for each obs type)
- Ingest header info into raw data archive
- Shift data to final raw archive location

- Discs arrive from ESO roughly weekly
- Plugged into a Linux box and copied to staging area
- Check for missing images
- Detect and correct missing header items
- Rename files (eg. v20091125_00001.fit)
- Create index files (global & for each obs type)
- Ingest header info into raw data archive
- Shift data to final raw archive location
- Process typically takes about 3-4 hours per disc.

Processing Steps

- Reset correction (debias)
- Dark correction
- Linearity correction
- Flat field correction
- Sky background correction *****
- Destripe

VIRCAM Stripes

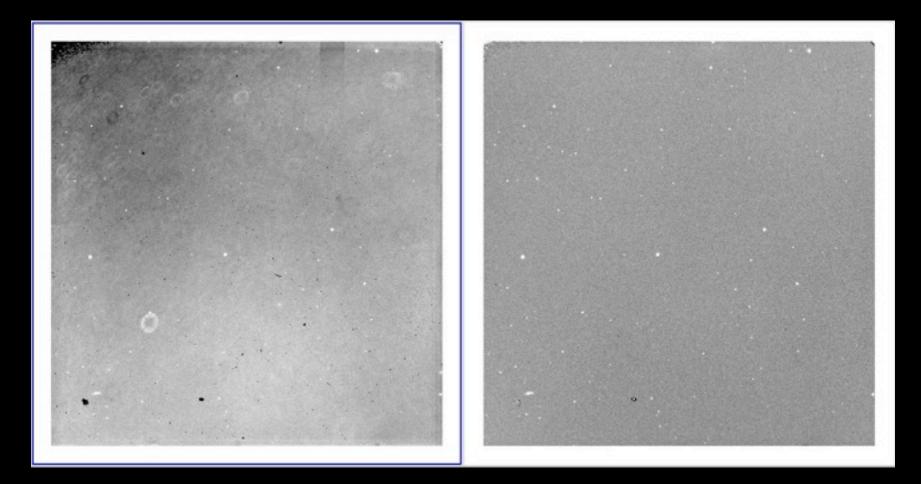
27 January 2010

Not Processing Steps

- Detector crosstalk removal
- Persistence
- Defringing

'Group' Processing Steps

- Interleaving (?)
- Dithering/Jittering
- Catalogue generation
- Astrometric calibration
- Photometric zeropoint calibration
- Tiling


Data Products

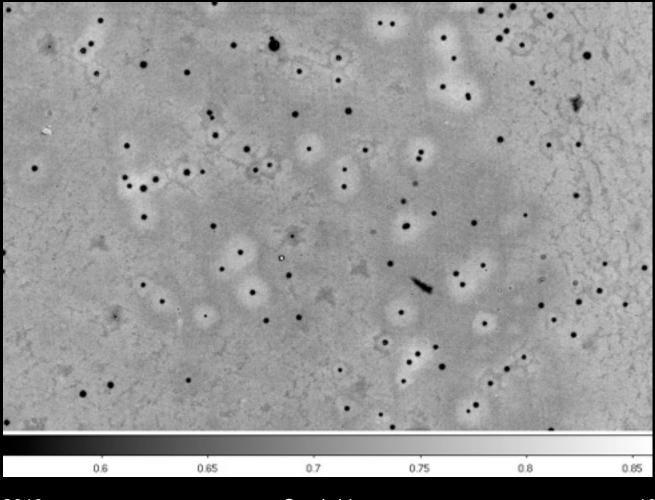
- Products consist of:
 - Calibrated single exposures
 - Interleaved superframes + confidence maps
 - Shift/averaged stack frames (pawprints) + confidence maps
 - Filled area tiles + confidence maps
 - Object catalogues for pawprints and tiles
- All products are in MEF files
- All QC parameters are stored in MEF headers
- All image products are floating point and will be eventually compressed.

IR Data Reduction Worries

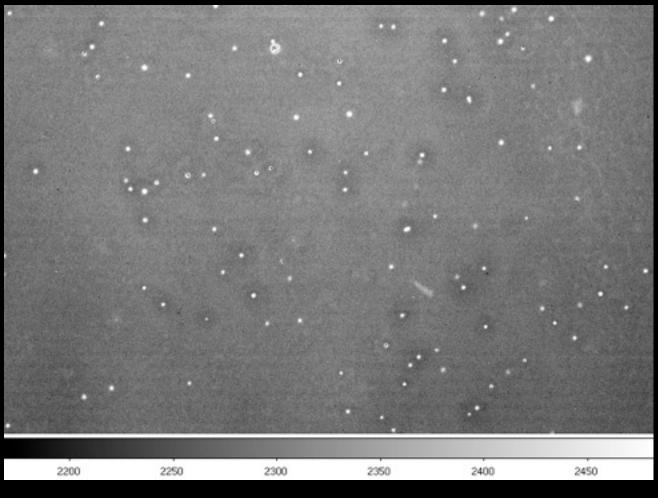
- IR detectors are currently inherently more unstable than optical CCDs.
 - Some odd electronic effects
 - Not as good cosmetically as CCDs
- Sky emission > 100x brighter than most objects of interest
 - And it's variable both spatially and temporally!
- Exposure times are short, so nightly data rates are very high.
 - ~250 Gb/night
 - Rice tile compression can save factors of 3-4 in 32 bit integer data. It's lossless and very fast.
 - "Bookkeeping" can be a NIGHTMARE!
 - Experience with WFCAM on UKIRT

Before And After Background Correction

27 January 2010

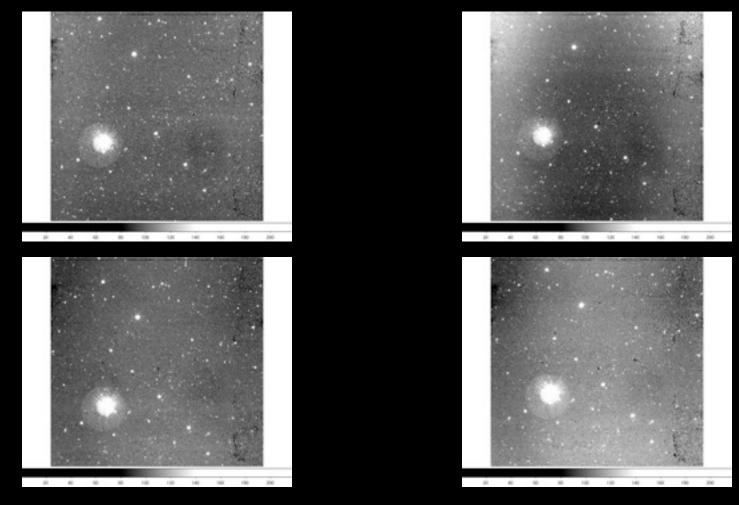

Jittering Schemes

- A standard filled tile consists of 6 'pawprints'
- PJ jitter all the jittered exposures for a given pawprint are completed before moving to the next pawprint.
- JP jitter an exposure is done in each pawprint before moving to the next jitter position


Available Background Subtraction Algorithms

- Tilesky 2 pass combination of all observations in a tile
- Pawsky Single pass combination of all observations in a pawprint with object masking done 'dynamically'
- Pawsky with standard mask as above, but the mask is given beforehand
- Offset sky Use a sky taken elsewhere

Flat Field Holes



Sky Frame Dots (Stars? No!)

27 January 2010

Time Variable Sky

27 January 2010

Cambridge

The VIRCAM
 detectors are not
 linear.

- The VIRCAM detectors are not linear.
- The VIRCAM
 detectors are not 16
 bit.

- The VIRCAM detectors are not linear.
- The VIRCAM
 detectors are not 16
 bit.

Detector	Linearity (%)	Saturation (ADU)
1	2.33	33000
2	3.32	32000
3	3.79	33000
4	3.50	32000
5	1.98	24000
6	2.98	28000
7	1.99	35000
8	3.38	33000
9	3.31	35000
10	4.44	35000
11	4.64	37000
12	2.55	34000
13	9.99	33000
14	2.72	35000
15	1.74	34000
16	3.28	34000

Cambridge

DIT times


- The sky saturates very quickly in H in particular
- 15s H exposures => background ~ 15-20K very often
- Leaves very small dynamic range for objects of interest
- Break up long exposures
 - e.g. 45s total should be observed as (DIT=9, NDIT=5) or (DIT=5, NDIT=9) and not DIT=15, NDIT=3

Offset Sky Exposures (how)

- For each object pawprint there should be an offset sky pawprint – maybe.
- DIT, NDIT, NJITTER, Filter should match object pawprint
- Unguided
- Large jitter offsets (~ half a detector width)

Offset Sky Exposures (where)

- Depends on what you're observing.
- Observers must look at offset sky regions in some visualisation tool to make sure this doesn't happen.
- Large jitter offsets can save us.

